skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mozaffari, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose SLOPE, a Double-Pruned Sparse Plus Lazy Low-rank Adapter Pretraining method for LLMs that improves the accuracy of sparse LLMs while accelerating their pretraining and inference and reducing their memory footprint. Sparse pretraining of LLMs reduces the accuracy of the model, to overcome this, prior work uses dense models during fine-tuning. SLOPE improves the accuracy of sparsely pretrained models by adding low-rank adapters in the final 1% iterations of pretraining without adding significant overheads to the model pretraining and inference. In addition, SLOPE uses a double-pruned backward pass formulation that prunes the transposed weight matrix using N:M sparsity structures to enable an accelerated sparse backward pass. SLOPE accelerates the training and inference of models with billions of parameters up to 1.25→ and 1.54→ respectively (OPT-33B and OPT-66B) while reducing their memory usage by up to 0.63→ and 0.61→ for training and inference respectively. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026